平成 26 年度 反応の化学b 期末試験問題

以下の問に答えよ。数値は3桁まで求めよ。

問 1. Using the Two-Point Form of the Arrhenius Equation

The reaction between nitrogen dioxide and carbon monoxide is given by the following equation:

$$NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$$

The rate constant at 701 K was measured as $2.57 \,\mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$ and that at 895 K was measured as $567 \,\mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$. Find the activation energy for the reaction in kJ/mol.

アレニウス式は
$$k = A \exp(-\frac{E_a}{RT})$$
, あるいは $\ln k = -\frac{E_a}{RT} + \ln A$ である。

気体定数 $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

問 2. Reaction Mechanisms

Ozone naturally decomposes to oxygen by the following reaction:

$$2 O_3(g) \longrightarrow 3 O_2(g)$$

The experimentally observed rate law for this reaction is as follows:

Rate =
$$k[O_3]^2[O_2]^{-1}$$

Show that the following proposed mechanism is consistent with the experimentally observed rate law.

$$O_3(g) \xrightarrow{k_1} O_2(g) + O(g)$$
 Fast

$$O_3(g) + O(g) \xrightarrow{k_2} 2 O_2(g)$$
 Slow

ヒント;まず、以下のことが成り立っていることを示す。

Rate(forward) = rate(backward)

$$k_1[O_3] = k_{-1}[O_2][O]$$

$$[O] = \frac{k_1[O_3]}{k_{-1}[O_2]}$$

コード 6063251

問 3. Finding
Equilibrium Concentrations
from Initial Concentrations in
Cases with a Small
Equilibrium Constant

Consider the following reaction for the decomposition of hydrogen disulfide:

$$2 H_2S(g) \Longrightarrow 2 H_2(g) + S_2(g)$$

 $K_c = 1.67 \times 10^{-7} \text{ at } 800 \,^{\circ}\text{C}$

A 0.500-L reaction vessel initially contains 0.0125 mol of H_2S at 800 °C. Find the equilibrium concentrations of H_2 and S_2 .

注) decomposition; 分解, sulfide; 硫化物,

vessel 容器

ヒント; まず、下の表を完成しなさい。

	[H ₂ S]	$[H_2]$	$[S_2]$
Initial	0.0250	0.00	0.00
Change			
Equil			

問 4. Determining ΔG_{rxn}° for a Stepwise Reaction

Find ΔG_{rxn}^o for the following reaction:

$$3 C(s) + 4 H_2(g) \longrightarrow C_3 H_8(g)$$

Use the following reactions with known ΔG 's:

$$C_3H_8(g) + 5 O_2(g) \longrightarrow 3 CO_2(g) + 4 H_2O(g) \qquad \Delta G_{\text{rxn}}^{\text{o}} = -2074 \text{ kJ}$$

$$C(s) + O_2(g) \longrightarrow CO_2(g) \qquad \Delta G_{\text{rxn}}^{\text{o}} = -394.4 \text{ kJ}$$

$$2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(g) \qquad \Delta G_{\text{rxn}}^{\text{o}} = -457.1 \text{ kJ}$$

問 5. Calculating ΔG_{rxn} under Nonstandard Conditions

Consider the following reaction at 298 K:

$$2 \text{ NO}(g) + O_2(g) \longrightarrow 2 \text{ NO}_2(g) \quad \Delta G_{\text{rxn}}^{\circ} = -71.2 \text{ kJ}$$

Compute ΔG_{rxn} under the following conditions:

$$P_{\text{NO}} = 0.100 \text{ atm}; P_{\text{O}_2} = 0.100 \text{ atm}; P_{\text{NO}_2} = 2.00 \text{ atm}$$

Is the reaction more or less spontaneous under these conditions than under standard conditions?

気体定数 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$.

ヒント:下式を用いる。

$$\Delta G_{\text{rxn}} = \Delta G_{\text{rxn}}^{\circ} + RT \ln Q$$