平成 28 年度 反応の化学b 期末試験問題

以下の問に答えよ。問題文は英語でも、解答の文章は日本語で良い。 数値は3桁まで求めよ。

問 1. Calculating ΔG_{rxn} under Nonstandard Conditions Consider the following reaction at 298 K:

$$2 \text{ NO}(g) + O_2(g) \longrightarrow 2 \text{ NO}_2(g)$$
 $\Delta G_{\text{rxn}}^{\circ} = -71.2 \text{ kJ}$

Compute ΔG_{rxn} under the following conditions:

$$P_{\rm NO}$$
 =0.200 atm; $P_{\rm O_2}$ =0.400 atm; $P_{\rm NO_2}$ =8.00 atm

Is the reaction more or less spontaneous under these conditions than under standard conditions?

気体定数 $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$.

問 2. Finding

Equilibrium Concentrations from Initial Concentrations in Cases with a Small Equilibrium Constant

Consider the following reaction for the decomposition of hydrogen disulfide:

$$2 H_2S(g) \Longrightarrow 2 H_2(g) + S_2(g)$$

 $K_c = 1.67 \times 10^{-7} \text{ at } 800 \,^{\circ}\text{C}$

A 0.500-L reaction vessel initially contains 0.0125 mol of H_2S at 800 °C. Find the equilibrium concentrations of H_2 and S_2 .

注) decomposition;分解, sulfide;硫化物, vessel 容器

問 3. Using the Two-Point Form of the Arrhenius Equation

The reaction between nitrogen dioxide and carbon monoxide is given by the following equation:

$$NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$$

The rate constant at 701 K was measured as $2.57 \,\mathrm{M}^{-1}\cdot\mathrm{s}^{-1}$ and that at 895 K was measured as $567 \,\mathrm{M}^{-1}\cdot\mathrm{s}^{-1}$. Find the activation energy for the reaction in kJ/mol.

気体定数 $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

問 4.

Consider the following gas-phase reaction:

$$H_2(g) + I_2(g) \longrightarrow 2 HI(g)$$

The reaction was experimentally determined to be first order in H_2 and first order in I_2 . Consider the following proposed mechanisms.

Proposed mechanism I:

$$H_2(g) + I_2(g) \longrightarrow 2 HI(g)$$
 Single step

Proposed mechanism II:

$$I_2(g) \stackrel{k_1}{\rightleftharpoons} 2 I(g)$$
 Fast

$$H_2(g) + 2I(g) \xrightarrow{k_3} 2HI(g)$$
 Slow

Proposed mechanism III:

$$I_2(g) \stackrel{k_1}{\rightleftharpoons} 2 I(g)$$
 Fast

$$H_2(g) + I(g) \stackrel{k_3}{\rightleftharpoons} H_2I(g)$$
 Fast

$$H_2I(g) + I(g) \xrightarrow{k_5} 2 HI(g)$$
 Slow

問. Proposed mechanism II, III のいずれにおいても、rate law が Rate = $k[I_2][H_2]$

と、Proposed mechanism I と同じになることを示しなさい。