```
2.5 太陽放射上土地主家放射·中小引数物理等」 171
2.51、つ。ラニケ分布関数 (W=2元レ)
    空間の角振動数いを持つ持動モードは
    エネルギー量子ためを単位として石が起される。
    モードにら個の量子をもつエネルギー一大能をのは
      20 = 5 hw
これは空洞内のいたまところに分布する量子化された調和振動子のエネルギーに等い。
このとき、分酉已関数 Z(T) = Zexp(-2s/エ) (T= heT)は
Z = \sum_{s=0}^{\infty} \exp(-s\hbar\omega/\tau) \qquad -(2)
   X = exp (-tw/I) とすると X < 1 左ので 無限級数
 をかえるニとかできるので"
 Z = \frac{1}{1 - \exp(-\hbar w/\tau)}  (3)
```

```
系がエネルギー stwをもつコ大能らにあるる寝率P(5)は
  ボルツマン因子P(Es)= exp(-をs/t) より
P(s) = \exp(-sh\omega/\tau) - (4)
   Sの熱平均値は
    \langle s \rangle = \sum_{s=1}^{\infty} sP(s) = Z^{-1} \sum_{s=1}^{\infty} sexp(-s\hbar\omega/\tau) - (5)
    ツミカル/でとすると (5)の右辺は
    [ sexp(-sy) = - d Σ exp(-sy)
            = -\frac{d}{d\eta} \left( \frac{1}{1 - \exp(-\eta)} \right) = \frac{\exp(-\eta)}{\left[1 - \exp(-\eta)\right]^2}
     を用いて
```

$$2.57^{\circ}$$
 うこクの 法則とステファン - ボルツマンの法則 モードの 熱平均 エネルギー は (7) 会>= (5) た ω = (7) 高温の 本証限 エ≫ない の 場合 (8)

```
一辺の長さしの立方体の空三同の中に関じこめられた輻射
 1=対してことの形の「紅目のモートがある。
   Ex = Exo Sinut cos (nxTx/L) sin (ngTy/L) sin (nzTZ/L)
  of Em = Eyo " STN ( " ) COS ( " ) Sin ( " )
   Ez = Ezo " Sin ( " ) Sin ( " ) (os ( " )
しいま
  n = (n2 + n2 + n2)/2
                                     - (.10)
によってれを定義すれば、自振動数は
    Wn=nTC/L (C…光速) 7%
と 53.
```

$$-\frac{1}{2} \times Wn = 2\pi Vn = n\pi C/L$$

$$V_n = \frac{n}{2} \cdot \frac{C}{L}$$

$$V_n = \frac{n}{2} \cdot \frac{C}{L}$$

空洞内の全エネルギーは(り)より $U = \sum_{m} \langle \xi_{m} \rangle = \sum_{m} \frac{\hbar w_{m}}{\exp(\hbar w_{m}/\tau) - 1}$ 今を特分に置き接える。 →米 $\sum_{n} (\cdots) = \frac{1}{8} \int_{8}^{\infty} 4\pi n^{2} dn (\cdots) \qquad -(13)$ $f = t = t = (n_x^2 + n_y^2 + n_z^2)/2$

電な場には、2つの独、立な偏りがあるので、、積分に因子2をかる。	3.
$U = \pi \int_{0}^{\infty} dn n^{2} t_{1} w_{n}$	
$exp(t_nw_n/\tau)-1$	
$= (\pi^2 h c/L) \int_0^\infty dn n^3 \frac{1}{\exp(h c n \pi/L \tau) - 1} - (14)$	-)
$==zz$ " $\chi = \pi \hbar c n/L \tau \chi \pi / \chi (14) l$	
$U = (\pi^{2} h c/L)(\tau L/\pi h c)^{4} \int_{0}^{\infty} dx \frac{\chi^{3}}{\exp \chi - 1} - (15)$	7
<u>元</u> 公式集	
体接 $V = L^3$ として $U = \pi^2$ T^2 T^4	-
ステファンーボルツマンの連高射法貝リ	

スパクトル密度Uwは、単位体装 単位角振動数金質域あたりのエネルキーである。 (14)を似に関して書き換えると $\frac{V}{V} = \int dw \, Uw = \frac{h}{\pi^2 C^3} \int dw \frac{w^3}{\exp(hw/\tau) - 1}$ それかえ スペクトル密度は $u_w = \frac{t}{\pi^2 C^3} \frac{\omega^3}{\exp(t_1 w/\tau) - 1}$ つのラニクの韓国自己リーンター 空洞の壁に小子しをあける。小子しからうたれ出る エネルギーの流東密度」しは単位面鉄の店面と (光の速度×単位時間)の長さをもの柱体に含まれる エネルギーて"ある。 Ju=「CULE)/VJ×(幾何因子) (幾何因子は 4) よって $Ju = \frac{CU(\tau)}{4U} = \frac{\pi^2 \tau^4}{60t^3c^2} = \sigma_B \tau^4 \left(\sigma_B = \frac{\pi^2 k_B^4}{60t^3c^2}\right)$ - (20) のBはステファンーボルツマン定数

単位振動数
$$V$$
 あたりのスペクトル密度 U_V は (円)まり $V = \int dw \ U_W = \int dv \ U_W = \int dw \ U_W =$

空洞におけた小孔より流出する電磁波でのエネルギー密度は 単位振動数Vあたりの 全ての角度に対して輻射は等方白的であるので、

単位角度あたり和となる。(※すまのS=4元い2)

小孔が流出する速度は光速とである。

よって

$$I(V,\tau) = \frac{C}{4\pi} U_V = \frac{2hV^3}{C^2} \frac{1}{\exp(\frac{hV}{\tau})-1} - (23)$$

同じく 単位波長 λ あたりの 流出する エネルギー家度は $T(\lambda, T) = \frac{C}{4\pi} U_{\lambda} = \frac{2hC^2}{\lambda^5} \cdot \frac{1}{\exp(\frac{hC}{T\lambda}) - 1}$ (24)

☆・2.5. 太陽放射と地球放射、温室効果

2.5.1. 黒体輻射とプランクの熱輻射公式

あらゆる物体はその温度に応じて光(輻射)と平衡状態を実現する。

温度 Tの物体と放射平衡にある電磁場(光)の単位波長(λ)幅、 単位空間体積当たりの放射エネルギー密度 $I(\lambda,T)$

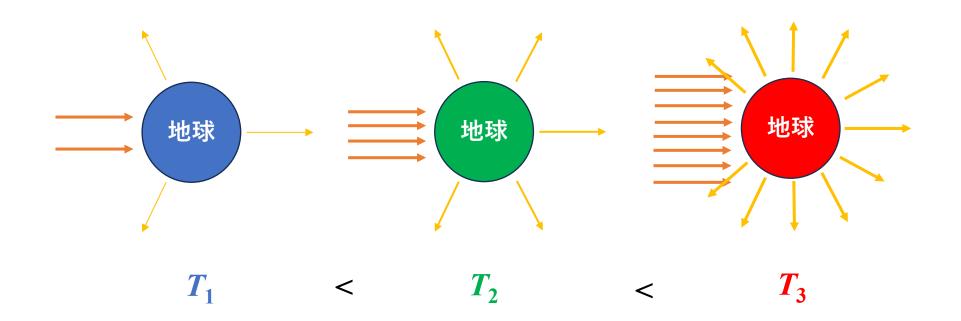
$$I(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT} - 1}}$$

h … プランク定数 (6.63×10⁻³⁴ J s)

c… 光速 (3.00×10⁸ m/s)

k…ボルツマン定数 (1.38×10⁻²³ J/K)

2.5.2. シュテファン・ボルツマンの法則 物体の単位面積が単位時間に放出するエネルギー流量 $S(W/m^2)$ は 絶対温度 Tの4乗に比例する。


$$S \propto T^4 \Rightarrow S = \sigma T^4$$

比例定数σをシュテファン・ボルツマン定数という。

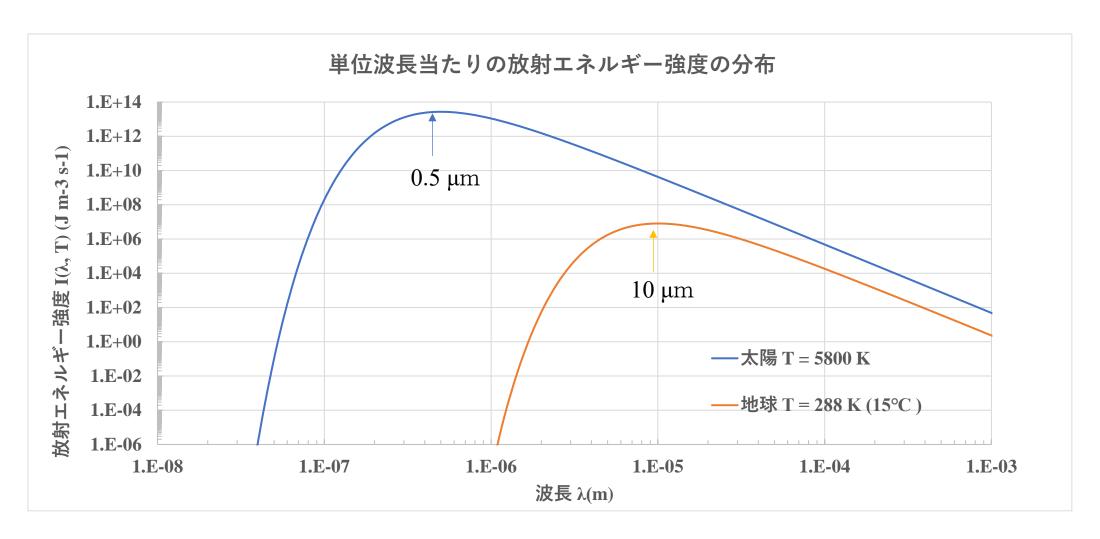
一定の輻射を受けている物体はどんどん暖まって温度が上昇し、 それに伴って放射するエネルギーも増えていく。

入射するエネルギーと同じだけのエネルギーを放射する温度になったとき釣り合う。 受け取る放射のエネルギーに応じてつり合う温度が決まってくる。

釣り合い状態では、受け取るエネルギーと放射するエネルギーは等しい。

2.5.3. ウィーンの変位則 放射のエネルギー密度が最大になる波長 λ_{max} は絶対温度Tに反比例し

$$\lambda_{max} \propto \frac{1}{T} \quad \Rightarrow \quad \lambda_{max} = b \frac{1}{T}$$


という式で表わされる。

以上のことから、

高温の物体は、短い波長の光を、大きな強度で放射している。 低温の物体は、長い波長の光を、それなりの強度で放射している。

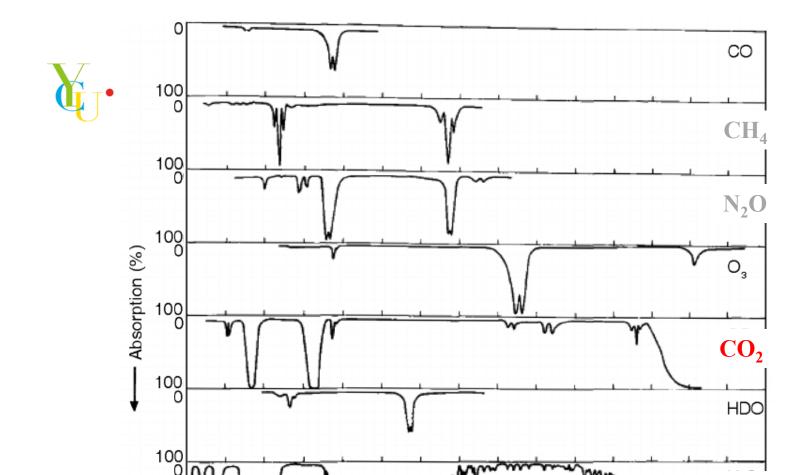
太陽(T = 5800 K)が放射する光は $\lambda_{\text{max}} = 0.5 \text{ }\mu\text{m}$ の可視光であり、 地球(平均温度 $T = 288 \text{ K}(15^{\circ}\text{C})$)が放射する光は $\lambda_{\text{max}} = 10 \text{ }\mu\text{m}$ の赤外線である。 つまり地球表面は可視光で温められ、赤外線を放出して冷える。

2.5.4. 地球大気の組成と赤外線の吸収 地球大気は可視光を吸収しない。

地球大気の大部分を占める酸素O。や窒素N。は赤外線を吸収しない。

大気中に僅かに含まれる水蒸気H,Oと二酸化炭素CO,は、赤外線を吸収する。

大気中にごく微量で存在するメタンCH』や一酸化二窒素N,O等の分子も 赤外線を吸収する。



地球大気の組成

成分	分子式	容積比(%)
窒素	N_2	78.11
酸素	O_2	20.96
アルゴン	Ar	0.9343
二酸化炭素	CO ₂	0.033
メタン	CH ₄	1.52×10 ⁻⁴
一酸化二窒素	N ₂ O	5×10 ⁻⁵
水蒸気	H ₂ O	不定

環境省/大気の組成

https://www.env.go.jp/earth/coop/coop/materials/02-apctmj1/02-apctmj1-011.pdf

Wavelength (µm)

地球大気に含まれる 気体分子の 赤外吸収スペクトル

 H_2O

Aggregate absorption

気体分子によって吸収された地球放射のエネルギーは、分子どうしの衝突によって大気全体に拡散し、大気全体の温度が上昇する。

大気はその温度に応じて、宇宙空間と地球表面の双方向へ 赤外線を放射する。

大気放射を吸収して地球表面は再び温められ温度が上昇する。

地球放射が再び大気に吸収され大気を温める。

大気は再び双方向へ赤外線を放射する。

この繰り返しで地球と大気が互いに温めあう。

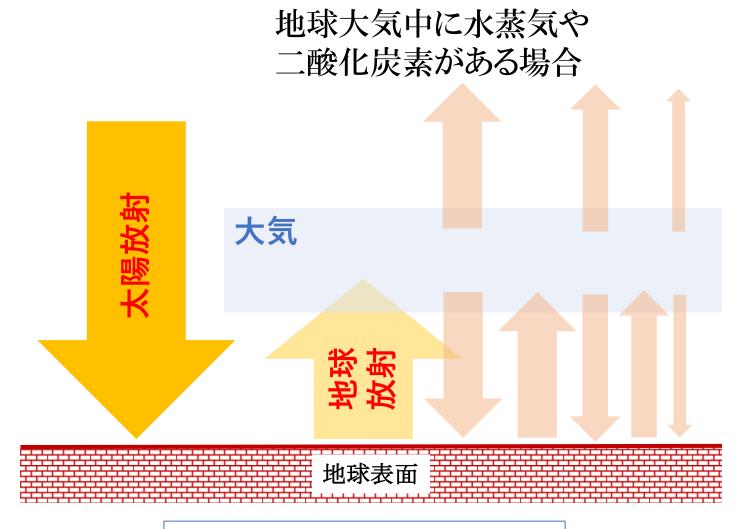
これが温室効果である。

温室効果と呼ばれる理由は、温室のガラスが大気と同じ働きをして、これと同じメカニズムで温室内の温度を上昇させるからである。

温室効果のために現在の地球の平均温度は+15℃で輻射平衡になっている。

もしも仮に、地球大気中に H_2O , CO_2 , CH_4 , N_2O 等の気体分子がなく、大気が赤外線に対して透明だったならば、地球の平均温度は-40°Cで輻射平衡になると予想される。

近年、人間の産業活動による CO_2 、 CH_4 、 N_2O 等の大気中での増加によって、地球温暖化が急激に進行していると考えられている。

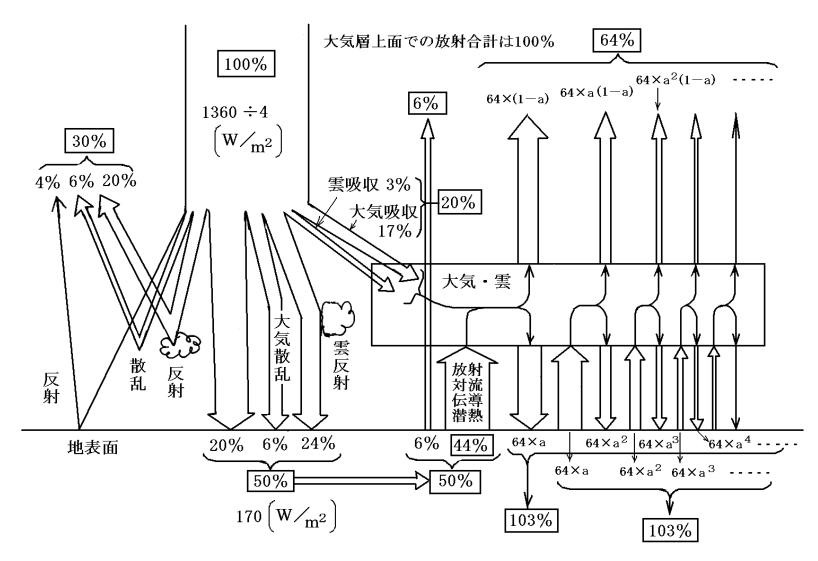


地球大気中に水蒸気や二酸化炭素がない場合

大陽放射 地球放射

地球表面の平衡温度 -40°C

地球表面



地球表面の平衡温度 +15°C

2.5.5. 地球のエネルギー収支

地球に入射したエネルギーは結局、最後にはすべて宇宙空間に逃げていく。地球大気圏上層に届く太陽光の内の50%が地表に届く。それが地表を暖める。暖まった地球は赤外線を放射する。そのうち6%が大気を透過してそのまま宇宙空間へ逃げ去る。残りの44%分と、太陽光が直接大気を暖める部分(20%)の合計64%が大気を加熱する。暖まった大気もまた、その温度に応じた赤外線を放射する。それは地表面に向かうものと宇宙に逃げるものになるが、地球に向かう成分は、地球を

再び暖める。そしてさらに暖められた地球は赤外線を放射し、それは大気に吸収される。以下同様のフィードバック機構が等比級数的に働く。大気の厚さを何層にも分割して考えると、各層において同様な平衡関係が成り立っている。温室効果ガス濃度が増えれば、より下層の部分であると大気から地表面に帰る割合が増大するであろう。そのために温室効果ガスの僅かな変動は輻射の地表への帰還率を大きく変動させる。

参考書

- 1. キッテル 熱物理学 第2版 山下次郎、福地充 訳 丸善株式会社 第4章.
- 2. 量子力学 朝永振一郎 著 みすず書房 第1章.
- 3. 物理学とは何だろうか(上)(下) 朝永振一郎 著 岩波新書.
- 4. 振動分光学(日本分光学会測定法シリーズ16)中川一朗 著 学会出版センター 第2,3章.